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ON THE MOVEMENT AND PREDICTION OF TRAVELING PLANETARY-SCALE WAVES 
RAYMOND J. DELAND AND YEONG-JER LIN 

New York University,* Bronx, N.Y. 

ABSTRACT 

Fluctuations of the planetary-scale waves, represented by spherical harmonics of the 500-mb. geopotential 
A study is made of the prediction of these fluctuations from previous changes and field, are statistically analyzed. 

using the non-divergent spherical vorticity equation. 

1. INTRODUCTION 

When numerical weather predictions were first com- 
puted using a planetary grid it was found that the largest 
or planetary-scale waves were computed to move rapidly 
westward a t  roughly 90” of longitude per day (Martin, 
[ll]; W’olff, [13]). This produced a systematic error in 
the predictions, since the largest-scale waves do not move 
in this way. Cressman [3] introduced into the vorticity 
equation a “barotropic divergence” term, scaled so as to 
have its greatest effect a t  the largest scales. The magni- 
tude of t,his term was empirically determined by the 
requirement that it reduce the mean-square error of the 
predictions as far as could be done by this means. 

Recent observations of the planetary-scale waves at  
500 mb. (Deland, [4, 51; Eliasen and Machenhauer, [7]) 
have suggested that the fluctuations in position and 
amplitude of the waves are due to the simultaneous 
presence of a stationary and a traveling component. 
In  the case of wave number 1, in middle-latitudes in 
winter, the stationary coniponent has its maximum height 
over Europe and minimum height over the North Pacific 
corresponding to the long-term average. The traveling 
component, of somewhat smaller magnitude than the 
stationary one, moves westward a t  speeds variously 
estimated a t  40’ to 70’ longitude per day. 

The previously reported westward mave-speeds are, for 
the waves of largest scale, significantly less than those 
corresponding to the non-divergent vorticity equation 
(Rossby and collaborators [12], Haurwitz [9]). This 
suggests that a divergence term like that of Rossby and 
collaborators [12] is necessary for agreement between 
observed and calculated wave-speeds. 

We have investigated the possibility of predicting the 
fluctuations of the planetary-scale waves, by statistically 
analyzing the fluctuations of the lsrgest-scale spherical 
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harmonics of the geopotential field. In this paper we 
present results of correlating the fluctuations (1) with the 
previous day’s change and with fluctuations of other 
harmonics, and (2) with changes predicted from the 
barotropic vorticity equation, including non-linear inter- 
actions with the other large-scale waves. The first, auto- 
correlation, analysis was undertaken in response to the 
subjective observation that there are regularities in the 
fluctuations which do not fit the simple Eossby-wave 
model, but which could be useful for prediction. The 
second procedure provides a partial answer to the ques- 
tion: how well can we predict the fluctuations of the 
largest-scale waves by means of the (barotropic) vorticity 
equation? 

The geopotential field was analyzed because it was 
immediately available a t  the beginning of the investiga- 
tion and because previous work had already shown that 
i t  exhibited the phenomenon of traveling planetary-scale 
waves. Whether analysis of the stream function derived 
from the balance equation, as has been done by Eliasen 
and Machenhaiier [7], gives a clearer picture of the 
phenomenon has yet to be determined. The main fluc- 
tuations of geopotential and stream function take place 
in middle latitudes, whilc the distribution of the fields 
among the diflerent degrees of spherical harmonics is 
strongly affected by the variations in lower latitudes, so 
the analysis of either height or stream function into 
spherical harmonics must be considered somewhat “un- 
natural”. It is, however, a convenient, though not pre- 
cise, way of distinguishing between different latitudinal 
scales, whichever field is analyzed. 

2. DATA 

The data consist of surface spherical-harmonia expan- 
sions of 500-mb. geopotential over the Northern Hemi- 
sphere north of about 2O0N., for 00 GMT on each day of 
January ]-February 28 and July l-August 31, 1962. 
The expansions consisted of ‘(odd” (antisymmetric about 
the equator) harmonics only. 
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The height field for the Northern Hemisphere at  a par- 
ticular hour is expressed as the sum of the odd harmonics 

+ zonal harmonics 

where the sum includes only values of n for which n-m is odd. 
h is longitude and Q, is latitude. m is longitudinal wave- 
number and 2(n-m) corresponds roughly to wave-number 
in the latitudinal direction: the latitudinal scale decreases 
as n increases. For a given harmonic (m, n), 2 T C  and 
ZFs are constant, and may be referred to as the magnitudes 
of the “cosine” and “sine” components of the particular 
harmonic. P;(+) is the associated Legendre function of 
the first kind. 

3. MOVEMENT OF TRAVELING PLANETARY-SCALE 
WAVES 

In this paper, we are concerned with the behavior of 
the largest scales only, as given by m=1, 2, and 3 and 
n-m=1, 3, and 5.  

The two components ZFc and Z?s constitute a vector 
amplitude Z:, equivalent to  scalar amplitude and phase, 
or the “complex amplitude” if complex exponentials are 
used. When the vector amplitude Z? of a planetary-scale 
wave is plotted on a polar diagram for successive days 
as in figures 1 and 2, the plotted point describes a char- 
acteristic clockwise circular path. This behavior is 

P 

FIGURE l.-Zi for July 1962. 

sketched in figure 3. The circular motion is interpreted 
(Deland [4]) as being due to a clockwise rotating vector, 
representing a westward-traveling component as also 
suggested by Eliasen and Machenhauer [7]. 

An interesting feature of the clockwise rotation is that 
it is often faster, corresponding to faster-moving waves, 
for smaller fluctuations. Although not apparent in figures 
1 and ‘2 this behavior is evident on many plots of the 
waves (cf. Deland [4, 5 ] ) ,  especially those for 2:. The 
relation of speed to amplitude has not yet been quanti- 
tatively determined. 

The fluctuations of Z:, in figure 2 (for August 1962) 
appear to  be correlated with the simultaneous fluctuations 
of 2: plotted in figure 1. The fluctuations of 2: appear 
to be the sum of a slow clockwise motion and a faster 
clockwise motion in phase with the rotation of (1, 2). 

COMPUTATIONS 

The rotation of the wave-vectors, corresponding to  
propagation of the traveling waves, and the relation 
between the waves of the same longitudinal wave-number 
m but different degree n, are both analyzed by computing 
least-squares vector regressions (Ellison [8], Anderson [I I ) .  

The regressions are of the form 

and 
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the primes refer to  deviations from the sample mean. 
The multiplication of a vector by a tensor corresponds to 
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(4) FIGURE 3.-Sketch of characteristic clockwise rotation and illus- 
tration of auto-regression procedure. 

azF1,= [E;lAzz1,- I+ [F]AZ?, J-  1 

where AZzJ is the 24-hr. change in 2; beginning on day J 
(see fig. 3). The regression and correlation results are 
presented in tables 1-4. The first, auto-regression, pro- 
cedure is schematically shown in figure 3. 

The average speed of propagation of the traveling 
planetary-scale waves is estimated from the regression 
coefficients as follows. If the relation between one day’s 
change and the next were a constant rotation, correspond- 

ing to a Wave traveling at constant speed with constant 
amplitude, the regression tensor would be skew-symmetric, 
i,e., of the form 

[2B2 21, with B;+@=l. 

240-141 0 - 67 - 4 
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January-February 

0.26 0. 59 -0.44 0.27 0.58 0.34 -Bo -63" -70" -109" 4.4 
.27 .16 -. 17 .55 .49 .24 - 220 -220 - 20" - 200 . 8  
.23 -. 03 .07 .50 .42 .18 +8" +8" ._ -40 _ _  
.27 .36 -. 26 .08 .37 .14 -61' -30" -40" -48' 6G 

0" -120 -110 ._ 
+18" .. +lo 

.29 .I9 .21 .41 .43 .18 +I" 

.29 -. 19 .32 .38 .44 I19 +370 

.12 .03 -. 11 .23 .19 .04 -22- -70 - 20" -73' 42: i 
1-18" -8" -40 ._ 
+26" _ _  f4O _ _  .51 -. 27 .47 .05 .51 .26 +53: 

.12 -. 44 .52 .09 .49 .24 f 7 7  

Vol. 95, No. 1 

c TABLE l.-one day lag a&o-regression-correlation of day-to-day changes. A a  is  angular rate of change, A 1  is  corresponding longitudinal 
speed, E & M is  speed computed by Eliasen and Machenhauer [7], R-H is Rossby-Haurwitz speed, X is  divergence factor (equation (8)).  

A~~.,.I=[BIAZ~,-~ 

R €i x E&M 
AX 

- - 
U, (meters) 1 BII BIZ BZI Bzz R. R.2 Aa AX - 

192 10.7 
1,4 6. 3 
18 8. 1 

7.4 
6.6 

2,3 

2 J  6.2 
394 6. 1 
3,6 6.6 
3,8 6. 3 

2,5 

I 

.94 

.M -. 01 

.46 

.17 

.02 

.54 

.23 -. 08 

-. 66 -. 11 
-.01 . -. 61 
-. 14 
. 01 -. 50 

-.24 
.c3 

.16 

.30 

.29 

.20 

.35 

.34 

.30 

.33 

.38 

.82 

.33 

.27 

.56 

.35 

.26 

.55 

.52 

.31 

.I37 . -. . 11 

.07 

.31 

.12 

.07 

.30 

.27 

.10 

-77" 
-32' 

00 
-779 
-27" 
-1' 

-70' 
-290 
+11° 

-77" 
-320 

00 
-38" 
-14' 

0" 
-230 
-10" 
+4O 

-70' 
-200 

-40" 
-12" 

_ _  
._ -m0 

-8" 

-116' 
-31' 
-120 
-550 
-19" 
-80 

-31" 
-12" 
-54 

3.0 
._ 
- _  

5.1 
10.4 
.- 

6. 2 
10. 0 _ _  

- 
TABLE 2.-Cross-~orrelation of changes for  pairs of harmonics. A p  is  phase diference between two harmonics. 

- 
A.%',J= [B]AZ:,r 

January-February 

0.50 
-. 10 

.47 

.33 
-. 04 
.48 
.34 

-. 03 
.62 
.60 

-. 05 
.63 
.64 

-. 06 
.70 
.34 

-. 07 
.68 

0.12 
.23 

-. 15 
.06 

-. 11 
.07 

-. 01 
.02 
.09 
. 11 
.oo 

-. 09 
-. 14 
. 11 

-. 13 
.35 
.04 

-. 03 

-0.19 
-. 16 

.21 -. 12 

.39 

.24 
-. 04 
.oo 
.13 

-. 08 
.02 
.09 

-. 15 
.02 
.05 

-. 04 
.15 
.39 

~ ~ -~ 

0.43 0.53 0.28 -18" 
.17 .29 .08 _.____.__ 

.63 .53  .28 +IS" 

. ? 2  .64 . 4 1  __..__.._ 

.31 .29 .08 ~ - _ _ - - _ _ _  

.79 .64 .41 $7" 

.33 .43 .19 -2" 

. 01 .03 .oo _.__. 2 __.__ 

.50 .44 ______.__ 2" 

.G3 .64 .41 -5' 

.@3 .03 .oo _.__--___ 

.69 .65 .42 +S" 

.33 .59 .34 -1" 
-. 05 . I 2  . O l  _-__- -___ 

.52 .55 .30 +8" 

.56 .64 .41 -25' -. 11 I 10 .01 _ _ _ _ _ _ _ _ _  

.58 .62 .38 $18" 

0.63 
-. 58 

. 19 

. 19 
-. 37 

.41 

.54 -. 08 

.40 

.33 
-. 05 

.28 

.55 
-. 06 

.76 

.40 
-. 04 
-43 

-0.10 
-. 05 

.15 

.02 

.ea 

.08 

.05 

.oo 

.w 

.13 
-. 03 -. 16 -. 02 
-. 25 

.12 -. 29 

.24 

.16 

0.34 0.90 0.49 0.24 
.13 --.E .34 .12 
.oo .38 .52 .27 
.I1 .45 .40 . 1 G  
.02 -.02 .37 .14 

-. 05 .50 .36 .13 
.GQ .55 .49 .24 

-.06 -.15 .IO . 01 
.04 .46 .40 .24 -. 16 .46 .41 .17 
. 01 .01 .10 . 01 
.09 .41 .41 .17 
. I 5  .m .68 .46 

-.lo -.31 .28 .08 
-. 11 .68 .67 .45 

.16 .23 .41 -17 
-.15 -.26 .n .07 
-. 24 .14 .43 .18 

+16" 
4-163' 

-15' 
+so 

-172' 
-90 
4-2" 

-165" 
-20 

-20" 
$1680 

+ZOO 

4-8" 
$136' 

-90 
4-36' 
-1280 
-350 

With the assumption that the actual relation is the sum of 
such a rotation plus some additional non-rotational aver- 
age "distortion", the problem of estimating the speed of 
propagation is reduced to  that, of estimating the skew- 
symmetric part of the regression, i.e., B, and B,. The 
skew-symmetric part of the regression tensor is given in 
terms of the computed components of the tensor by 

The magnitude of the average angle of rotation from one 
day's change to the next is then given by 

and its quadrant is easily determined from the skew- 
symmetric tensor. This angle is tabulated for each of 
the regressions in tables 1-4, with positive angles corre- 
sponding to clockwise rotation. 

In  view of the "tendency toward zero" of the regression 
coefficients when the correlation is low, evident in the 
computed values given in table 1, the question of bias in 
the estimates of arises. It can be shown, using a 
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TABLE 3.-Double regression of changes for one harmonic on another harmonic and itself a day earlier. Arp is  phase difference, AX i s  equivalent 
longitude difference 

January-February I 

0.18 
.30 
.24 
.07 
.25 
.45 
. I 2  
.33 
.23 
.01 
.24 
.50 
.20 
.32 
.30 
.36 
.I3 
.03 

-. 01 
.70 
.n 
.oo 
.21 
.52 
.I7 
.60 
.30 

-. 01 
. I 8  
,60 

-. 07 
.67 
.09 

-. M 
.39 
.64 

0. 64 
-. 04 
.60 
.02 
.08 

-. 12 
.20 

-. 03 
-. 03 
-. 11 
-. 11 

.08 

.37 
-. 06 
-. 08 

.I8 
-. 44 
-. 02 
-. 50 
.I4 
.37 

-. 03 
.13 
.08 
.23 

-. 04 
-. I9 
-. 04 
-. 20 
-. 01 
.I4 

-. 13 
.04 
.I3 

-. 21 
-. OB 

-0.41 
-. 09 
-. 48 
.03 
.05 
.01 

-. 25 
.01 
. I2  
.28 
.01 
.m 

-. 26 
. 00 
.I6 

-. 01 
.52 
.13 
.36 
.36 

-. 26 
. 01 
.21 

-. 04 
.23 

-. 07 
.3a 
. 00 
.26 
.05 

-. 15 
-. 09 
-. 10 
.03 
.53 

-. 04 

0.10 0.49 -74" 
.40 ___..____ -4" 
.I7 .38 -69' 
.2G _______.. -10" 
.45 .42 -11' 
.52 ___..-___ +IO" 
.23 .48 -51" 
.61 _____.___ +3" 
.44 .23 +13" 
.29 __...-___ $64" 
.24 .46 +14O 
.69 ___...___ +6' 
.02 .30 -71' 
.31 _._..____ +5" 
.I1 .46 +30" 
.44 _._______ -13' 
.w .25 +79" 

-.I2 _.___..._ -60" 
. 00 .E4 -89' 
.40 _____..__ +IlO" 
.07 .I4 -61" 
.01 _.----___ +7i" 
.42 .34 +70 
.48 .._______ -7" 
.04 .48 -24" 
.64 ______.._ +5O 
.39 .I9 +370 

.I4 .49 +55" 

.58 ______.__ +39 

.34 - - - - - -___ +2" 

-. 05 ______.__ -33" 

.I8 .38 -70" 

.23 .05 -25' 
-. 03 _ _ _ _ _ _ _ _ _  +46' 
.w .52 +84" 
.57 .._--__.. +I" 

-740 
- 40 
-69O 
-10" 
-110 
$10" 
-51" 
+3" 
+13" 
+Sa" 
+14' 
4-6'' 
-36" + 2 O  
+lo" 
-4" 

+26" 
-20" 
-30" 
+4' 
-30" 
+so 
+4" 
-4" 

-12- 
+2" 

+IS" 

+no 
+2" 
- 23" 
+I" 
-80 

+15" 
+31" 

0" 

-16" 

July-August 

0.18 
.oo 
. I9 

-. 15 
.10 

-. 02 
.23 
.21 

-. 39 
.35 
.34 
.17 

-. 05 
.46 
.40 
.26 

-. 10 
.69 
.40 
.20 
.05 
.04 
.35 
.I3 
.I9 
.34 

-. 07 
.I3 
.25 
.M -. 12 
.47 
.I1 

-. 09 
.62 
.58 

0.95 
-. 13 
.88 
.M 
.I7 
.35 
.n 
.05 
.oo 
.35 
.04 

-. 37 
.40 

-. 07 
.!28 

-. 28 
.26 -. 42 
.I6 

-. 04 
.47 

-. 03 
. I 2  
.36 
.24 
.02 

-. 05 
.02 -. 21 
.04 
.39 -. 13 
.52 -. 26 
.30 
.37 

-0.65 
.33 

-. 65 
.26 -. 05 

-. 05 
-. 09 
.I4 
.05 

-. 16 
.09 

-. 10 -. 57 
.22  -. 36 
.35 

-. 02 
-. 65 
-. 19 
-. 06 -. 61 
.07 

-. 01 
-. 31 
-. 20 
-. 11 

.02 
-. 12 
-. 10 
.01 -. 36 
.22 

-. 51 
.22 

-. 13 
-. 69 

0.04 
.57 
.26 
.os 
.36 
.30 
.29 
.40 
.04 
.16 
.50 
.41 
.08 
.38 
.33 
.23 
.30 
.60 
.06 
.59 
.21 

-. 05 
.40 
.36 
.21 
.42 

-. 09 
.31 
.39 
.30 
.10 
.64 
.29 

-. 14 
.61 
'05 

-82' 
+39" 
-73" 
+70' 
-26" 
-730 
-35" 
+go 

+171° 
-4h' 
+4" 
+25" 
-44" 
+lo" 
-14" 
+IS" 
-480 
-4" 

-120 
+7" 
-38" 
+as" 
- 6" 
-no 
- 249 
- 59 

+w 
-80 

+ l Z O  
- 3" 

-290 
+So 
- 230 
+374 
- 6' 

-20" 

simple "rotation plus noise" model, that is unbiased 
to the extent that it is not affected by the addition of 
random "noise" and/or an additional non-rotational 
component of the fluctuations. 

For the regression of AZJ on A&-1 the estimated angle 
corresponds to the phase speed of the waves; the spatial 
speed of propagation in degrees of longitude per day is 
then equal to the phase speed divided by longitudinal 
wave-number. The speeds of propagation are tabulated 
in tables 1, 3, and 4, with sign such that westward propa- 
gation corresponds to negative speeds, following the usual 
convention. For the cross-correlations between different 
degrees, the derived angle corresponds to a phase shift 
between the rotating part of the two harmonics, one being 
ahead of the other. In  this case a positive angle means 
that the "dependent" vector (on the left hand side of (2)) 
is on the average rotated clockwise from the "independent" 
vector (on the right hand side). 

RESULTS 

First considering the auto-regressions, A& on AG-1, 
it is apparent that the regression coefficients correspond 
to the simple rotat,ion model t o  a varying extent. I n  the 
winter period only (1,2) and (1,4) and perhaps (2,3) show 
definite rotation. The rotation is considerably more 
apparent in the summer months, the regression coefficients 
for (1,2), (1,4), (2,5), and (3,6) all conforming to the skew- 
symmetric pattern quite closely, and the other two also 
doing so fairly well. It is also noticeable that the auto- 
correlation coefficients are also generally higher in the 
summer period. 

In  both periods the behavior of the largest-scale wave 
(1,2) is closest to the simple traveling wave model. 

The estimated wave-speeds toward the west are in 
every case less in the winter than in the summer period, 
the difference ranging from loo to 2s' longitude per day. 
In  view of the erratic form of some of the regression 
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TABLE 4.-Double regression of changes for one harmonic on both itself and another harmonic a day earlier. A p  is phase di$erence,rX is 

equivalent longitude diference 

~ ~~ 

January-February July-August 

0. 30 
-. 03 

.25 
-. 10 

.24 

.16 

.36 
-. 13 

.21 

.23 

.@a 

.44 

.21 

.09 

.27 
-. 04 
.29 

-. 01 
.28 
.06 
.29 
.m 
.25 
.11 

-. 02 
.20 
.09 

-. 03 
.55 

-. 04 
.54 

-. w 
.14 
.13 

-. 04 
.45 

0.66 
-. 11 

.57 

.02 

.03 

.26 

.26 
-. 11 
-. 02 
-. 26 
-. 06 
.oo 
.35 
.11 
.36 
.02 
.23 

-. 12 
.35 

-. 22 
-. 19 
-. 10 
-. 35 

.24 

.06 
-. 01 

.05 

.16 
-. 31 

.09 
-. 29 
.03 

-. 46 
-. 15 
-. 49 
-. 18 

-0.49 
.06 

-. 46 
.02 

-. 13 
-. a3 
-. 29 

.27 

.12 

.07 

.10 

.oo 
-. 36 

.15 
-. 26 

.10 

.31 
-. 28 

.19 

.oo 

.32 

.05 

.23 

.18 
-. 14 
.04 

-. 10 
. 01 
.66 

-. 25 
.36 
.13 
.54 
.28 
.34 
.47 

0.19 
.13 
.24 
.07 
.50 
. 1 2  
.55  

-. 01 
.42 
.30 
.30 
.28 
.07 

-. 02 
.08 
. 01 
.43 

-, 05 
.24 
.24 
.38 
. I 5  
.28 
.14 
.24 

-. 01 
.22 

-. 03 
-. 05 

.21 
.03 
.05 
.05 

-. 14 
.01 

-. 14 

0.36 0.96 
-. 08 

.94 

.08 

.08 

.15 

.34 
-. 21 
-. 02 
-. 42 

.13 
-. 31 
.44 
.02 
.47 
.02 
.11 
.ll 
.25 

-. 13 
-. 02 
-. 20 
. 11 

-. 24 
.48 
.05 
.50 

-. 23 
.02  
.31 
.28 

-. 17 
-. 07 
-. 08 

.@5 
-. 10 

-0.67 
.08 

-. 63 
.08 
.03 

-. 20 
-. 19 

.21 
-.os 

.02 
-. 08 
-. 01 
-. 59 
-. 08 -. 61 
.oo 

-. 04 
-. 21 
-. 16 
.06 
.02 
.13 

-. 03 
.18 

-. 55 
.10 

-. 48 
.09 

-. 11 
-. 25 
-. 29 

.23 

.04 

.18 

.04 
-. 04 

0.16 
-. 02 

.15 
-. 13 

.30 
-. 02 
.n 
.a 
.a 
.03 
.32 

-. OB 
.13 
.17 
.19 

-. 05 
.33 
.07 
.38 

-. 06 
.36 
.10 
.24 
.19 
.16 
.19 
.31 
.12 
.31 
.02 
.26 
.23 
.45 
.03 
.37 
.03 

-78' -78" 

-77" 
+I" 
-6" 

+82" - 50" 
+70° 
-5" 

+74" 
-190 
4-67' 

- - - - - - 

- - _ _  - 
-6' 
-380 

-67" 

-65' 

-12" 
-46' 
-31" 
-69' 
+ 1 3 O  

$32" 
f24O 

00 
-68" 

-61" 

-. - -. - - 

-. - -. . - 

-77" 
+lo 
-6" 

+82" 
- 500 
+70° 
- 5" 

$74O 
-190 
$67" 

- - -_- -_ 
-13" 
-770 

.n 

.10 

.15 

.15 

.21  4-6'' 
. - -. - - - 
-17" 
4-36" 
+38O 

4-35" 
$48" 
-14' 

.16 -8" 
-30" 
-17" 

.32 

.30 

-12" 

+ 3 O  

+le" 
0" 

+3" 

- . - - - . . 

.16 

tensors, the consistency of the summer-winter speed 
differences may be partly coincidental. 

Let us compare these results with those of Eliasen and 
Machenhauer [7] (which are for movement, of the tend- 
ency field, but comparable) and Deland [5]. As shown 
in table 1, Eliasen and Machenhauer's results, for Jan- 
uary 1957 agree quite .closely with. ours, though, rather 
surprismgly, better- with- those fo r  the summer period 
than those for the winter. Deland's [5] speeds for April 
1961 are, on the other hand, all considerably greater 
algebraically, i.e., less westward than the others. Com- 
parison of figure 1 with figure 1 of Deland [5] shows that 
the difference is not entirely due to  the different methods 
of analysis: the rotation apparent in figure 1 (of this 
paper) for August 1962 is clearly more rapid on the average 
than that shown in the earlier paper for April 1961. 

Considering now the results for the cross-correlations 
between different degrees, in table 2, we see that the 
relationship apparent in figures 1 and 2 shows up as a 
moderately high correlation of AZ: with AZ; in both sum- 

mer (0.52) and winter (0.53). Correlations of similar 
magnitude appear for AZA on AZ: (high correlation 
winter, low in summer). AZ; on AZ, and A 2  and AZ:, 
(0.67, in summer, 0.55 in winter). All "adjacent" pairs 
of harmonics, AZ; and AZ;, AZ; and AZA, etc., are at  least 
moderately well correlated and closely in phase, both in 
summer and winter. The correlations between AZ; and 
AZ!, AZ and AZ, AZ and AZ; are small, but it is inter- 
estmg that in summer the corresponding changes in these 
pairs are almost opposite in phase. This does not cor- 
respond to oppositely moving waves, a relationship that 
is excluded by the regression computation. The interpre- 
tation of this observation is postponed until after the 
results for the multiple regressions are presented. 

The results for the multiple-regression correlations iu 
table 3 show that the total correlations are in each case 
higher than for the correlations between pairs of vectors, 
presumably mainly because the independently varying 
parts of the vectors on the right hand side of equation (3) 
"explain" some of the variation of the dependent vector, 
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but also in part because of the decreased “degrees of 
freedom” of the computed coefficients. The interpreta- 
tion of the partial regressions is complicated by the time 
lag between the dependent variable and one of the predic- 
tors (the predictand itself for previous day). In particu- 
lar, the opposite phase of A22. and AZ; etc., previously 
mentioned, is apparently masked by the fact that here 
we are regressing AZ2. on the part of AZ; that is uncorre- 
lated with hz: for the previous day. 

The calculated wave-speeds present a regular variation 
with scale, as can be seen from figure 4. The wave-speeds 
are considerably greater toward the east in winter than 
in summer, as has already been observed for the auto- 
correlations. The difference between winter and summer 
increases with decreasing scale, up to 25‘ to 30’ of longi- 
tude per day for the smallest scales considered here. 

According to calculations of Eliasen and Machenhauer 
[7], the difference between winter and summer speeds 
cannot be due to the difference in advection by the zonal 
wind, even allowing for the varying weighting of the latitu- 
dinal variation of the zonal wind for different harmonics. 
They have computed interactions with the zonal har- 
monics for December 1956-January 1957 (see their table 
10) and it is apparent that not only are they small (except 
for (l,2), (2,3) and (3,4)) even in winter but they decrease 
with decreasing scale. It follows that the difference be- 
tween the observed wave-speeds in summer and winter is 
considerably greater, for all but the largest scales, than 
can be explained by the non-divergent barotropic vorticity 
equation. 

The relations between the different estimates of the 
speeds of the various waves is schematically represented 
in figures 5 and 6. Considering Zi in January-February, 
its actual westward speed from the auto-correlation calcu- 
lation is 63O/day. Its fluctuations are correlated (R= 
0.53) with the slower fluctuations of 2:: when the speed 
of 2; is calculated holding 2: fixed (multiple regression), 
the estimated westward speed increases to  74”/day. 
AZ; is weakly correlated with AZ;: when this effect is 
removed (but the effect of AZ; remains), the estimated 
speed is 69’ (>63O, but <74’). And similarly for the 
other harmonics ; note especially the estimates of the speed 
of 2;: 22’ “actual”, 51’ with 2; fixed but the interaction 
with the rapidly moving 2; present; 10’ eastward when 
the effect of 2: is removed but the effect of the slower 2: 
is present. The observed speeds show a consistent pat- 
tern, in both the winter and summer periods. It is ap- 
parent that the speed estimates by simple auto-correlation 
are affected by the more rapid westward rotation correlated 
with the motion of the next lower degree. This effect is 
strongest in summer when the rotation of the lower- 
degree waves, Z;, ZZ,, and Zi, is more clearly defined. 

The above results are consistent with R continuous 
spectrum of wave-speeds for each harmonic, which seems 
to be evident in the polar diagrams, as previously 
mentioned. 

- 
AA 

20” 

Eost 1 
West 1 

0” 

-20” 

-40” 

-60’ 

-800 
” 
J I L 

4 5 6 7 8  
2 3 n  

FIGURE 4.-Variation of wave-speed with scale. Abscissa is 
1/n, proportional to a representative linear scale. Points repre- 
senting one longitudinal wave-number m are connected by straight 
lines with value of m indicated at points for lowest and highest 
degree n. 

It appears that there are traveling waves present which 
are similar to  spherical harmonics of the geopotential 
field, but not exactly the same. If we refer to  the travel- 
ing wave that is mostly evident in AZ; as &, it appears 
that Ad;, in summer at  least, is made up mainly of Z:, 
some Z;, and a little negative 2;. Likewise for 4: and 
&. This raises the question of the form of the traveling 
waves, and in particular whether the use of spherical 
harmonics of a stream function derived from the balance 
equation would result in a better separation of different 
characteristic motions. This matter will be dealt with 
in a later article. 

It is of interest to relate the mean speeds of the waves to  
the quasi-geostrophic barotropic vorticity equation, since 
even the largest-scale waves should be governed by it 
(Deland [SI). The barotropic vorticity equation can be 
written 

(5) 

where z is the geopotential height, R is the radius of t,he 
earth, and X is longitude. 

If a “barotropic-divergence” term, suggested by Rossby 
and collaborators [12] and further discussed by Charney 
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FIGURE 6.-Schematic diagram of different estimates of wave- 
speed, for m= 1 in summer. 

[2] and Cressman [3], is included, the vorticity equation 
becomes 

a 2Q bz x a2 - (v*z)+v.v(v~z)+--~- - 
at ~2 a h  R2at 

where x is the divergence coefficient. 

Equation (6) is identical to Eliasen and Machenhauer's 
equation (17), except that here we are ushg the geo- 
potential instead of the stream function. The relation of 
x to Cressman's coefficient p is given by 

Z 7 . 5 p .  

With the barotropic-divergence term included, the 
spherical-harmonic form of the vorticity equation is 

in which y identifies a particular harmonic of the 
geopotential height, of complex amplitude 2,; m, and n, 
are the order (longitudinal wave-number) and degree of 
the particular harmonic; D is the rate of rotation of the 
earth; Li is the average zonal wind, corresponding to the 
amplitude of the (0,1) harmonic, expressed as an angular 
velocity; 2, and 20 are the complex amplitude of other 
waves that affect 2, through the interaction coefficient 
I,.e; x is the divergence coefficient; and the other symbols 
have their usual meanings. 

I t  is seen that the theoretical effect of the barotropic- 
divergence term is to reduce all wave-speeds (neglecting 
interactions with other waves) in the proportion n,(n,+ 1)/ 
Mn,+ 1) + X I ;  i.e., 

W,bslWR--H=n,(ny+ l)[n,(n,+ 1) +XI-'. 

We can thus estimate magnitudes of the coefficient x 
that would correspond to the observed speeds. The 
mean Rossby-Haurwitz wave-speeds are calculated from 
the formula 

Thus the value of x corresponding to the observed wave- 
speeds is given by 

x=nT(n.,+ 1) ( .R- -H-~oba)~oba .  (8) 

The observed speeds (from table l), Rossby-Haurwitz 
speeds, and the corresponding values of x are listed in 
table 1. 

It is immediately obvious that the values for x are 
very variable. They are, however, mostly much less than 
30, corresponding to Cressman's value of 4 for his factor p .  
In general, though with conspicuous exceptions, they can 
be considered roughly equal to the value of 5 deduced by 
Rossby and collaborators [12] as appropriate to their f ree  
surface model of the atmosphere. The results do not fit 
the freesurface model in two ways, however; firstly there 
is a consistent increase (for the well-defined values) of x 
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with decreasing scale, and secondly, in some cases the 
waves move toward the east although the Rossby- 
Haurwitz wave-speed is westward. The values of x are 
larger in winter or negative, which is consistent with the 
observation that the summer-winter differences in wave 
speed are greater than can be explained by the difference 
in zonal wind. 

The discrepancy of sign of observed and Rossby- 
Haurwitz speeds is immediately removed if we re-define 
the barotropic divergence term in equation (6) so that 
the local derivative &/at refers to a coordinate system 
moving with the mean zonal wind. This is a straight- 
forward procedure. 

4. PREDICTION OF TRAVELING PLANETARY-SCALE 
WAVES 

PREDICTION BASED ON PREVIOUS CHANGES 

We have already calculated the fractional reduction in 
variance of each day's change that can be obtained by 
estimating it by the linear regression on .the previous day's 
change. It is equal to  the square of the vector correla- 
tion coefficient, and is tabulated for each wave as Rt in 
table 1. These values correspond to a skill score for pre- 
diction, since they give the fractional reduction of mean 
square error of the geopotential height compared to hold- 
ing the wave constant, exact prediction of the particular 
wave corresponding to 100 percent. Similarly for predic- 
tion based on the previous day's change and that of 
another "adjacent" wave; the corresponding ratios are 
given in table 4. It should be mentioned that these 
ratios are necessarily higher than would be achieved if the 

Non-linear 

R. A0 

-- - 
0. 78 0.61 flQO 
. 78 ____.___-_ -110 
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regression coefficients were used with an independent 
sample as in a realistic prediction situation. How much 
higher depends on the stability of the regression coefficients 
which needs to  be determined from a larger sample than 
we have considered here. 

As would be expected, the ratios in table 4 are larger 
than those in table 1, but they are in no case much higher; 
the addition of another wave as a predictor does not 
produce any significant improvement. 

The results must be considered somewhat disappointing 
as regards practical prediction of these waves. Only 2;'s 
behavior in summer is regular enough for more than 50 
percent of its variance to  be accounted for. In  summer, 
results for many of the other harmonics fall in the 20-35 
percent range, which may or may not be useful. In 
winter only the largest-scale wave has more than 30 per- 
cent of its variance explained by the regression. 

PREDICTION USING THE BAROTROPIC VORTICITY EQUATION 

We have computed the vector regression of the observed 
changes on "predicted" changes calculated from the 
spherical vorticity equation (7) with values of x ranging 
from 0 to  24. The predicted changes were calculated for 
simple Rossby-Haurwitz waves and using the non-linear 
vorticity equation including interactions with wave- 
numbers up to longitudinal wave-number 6. The restric- 
tion to long-wave interactions was mainly because of 
limitations on computer storage, but also because the 
interactions with the other long waves are the most 
important ones for the planetary-scale waves (see Eliasen 
and Machenhauer [7]). The results of these regressions 
are given in table 5 .  
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TABLE 5.-Correlations of changes with those predicted by  spherical vorticity equation, f o r  diflerent values of divergence factor x. Ai3 is angle 
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FIGURE 7.-Sketch of Rossby-Haurwitz prediction model. [RHIZ; is change predicted using Bossby-Haurwits wave, [B][RH]Z; 
is linear function of Rossby-Haurwitz change that best fits observed changes, is angle corresponding to regression tensor [B] .  

The squared correlation coefficients again represent the 
ratio of explained to total variance for each harmonic. 
The ratios are similar to  those obtained for auto-regression 
of daily changes in the previous section. Again only for 
the largest scales, in summer in particular, can the corre- 
lations be considered large enough to be useful. The 
non-linear prediction does not yield any apparent improve- 
ment over the simple Rossby-Haurwitz wave model. 

If the regression a n g l e s q  for different x's are compared, 
it is seen that the best fit between predicted and actual 
changes occurs for smaller values of x than those deduced 
from the auto-regressions. In  fact for all but 2; the best 
fit would be obtained for negative values of x, which we 
did not use in the computations. This is because in 
computing the predicted change from the vorticity equa- 
tion the changes are proportional to  the deviation from the 
mean. Large deviations from the mean, which are given 
most weight in the regression, are most often followed by 
changes toward the mean. This tendency toward the 
mean superimposed on the rotation increases (negatively) 
the apparent angle of rotation deduced from the regression. 
All the vector correlation coefficients obtained using the 
barotropic vorticity equation include the regression toward 
the mean, which is relevant for prediction but not to  
analysis of wave motions. 

5. CONCLUDING REMARKS 

The principal results of the paper are the details of the 
behavior of the plane tary-scale traveling waves. Some 
general summarizing comments are, however, appropriate. 

The waves move approximately in accordance with the 
free-surface model of Rossby and collaborators [ 121, but 
with a wide range of varying speeds, as of course do the 
synoptic-scale waves. The different (latitudinal) har- 
monics of the same longitudinal wave-number are corre- 
lated with each other, but have different characteristic 
speeds of their own. The variations of movement of each 
wave about its mean speed are not explainable in terms 
of interactions, through the non-linear terms in the 
barotropic, vorticity equation, with other waves. 

The fluctuations of the waves are so irregular that 
prediction of them to a useful accuracy does not seem to 
be practical by the methods attempted in this paper, 
except for the largest-scale wave 2: 
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